Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants.

Identifieur interne : 000098 ( Main/Exploration ); précédent : 000097; suivant : 000099

New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants.

Auteurs : Mitra Khademi [Iran] ; Marzieh Varasteh-Shams [Iran] ; Farhad Nazarian-Firouzabadi [Iran] ; Ahmad Ismaili [Iran]

Source :

RBID : pubmed:32903611

Abstract

Antimicrobial peptides have been long known to confer resistance to plant pathogens. In this study, new recombinant peptides constructed from a dermaseptin B1 (DrsB1) peptide fused to a chitin-binding domain (CBD) from Avr4 protein, were used for Agrobacterium tumefaciens-mediated transformation of tobacco plants. Polymerase chain reaction (PCR), semi-quantitative RT-PCR, and western blotting analysis demonstrated the incorporation and expression of transgenes in tobacco genome and transgenic plants, respectively. In vitro experiments with recombinant peptides extracted from transgenic plants demonstrated a significant (P<0.01) inhibitory effect on the growth and development of plant pathogens. The DrsB1-CBD recombinant peptide had the highest antifungal activity against fungal pathogens. The expression of the recombinant peptides greatly protected transgenic plants from Alternaria alternata, Alternaria solani, Fusarium oxysporum, and Fusarium solani fungi, in comparison to Pythium sp. and Pythium aphanidermatum. Expression of new recombinant peptides resulted in a delay in the colonization of fungi and appearance of fungal disease symptoms from 6 days to more than 7 weeks. Scanning electron microscopy images revealed that the structure of the fungal mycelia appeared segmented, cling together, and crushed following the antimicrobial activity of the recombinant peptides. Greenhouse bioassay analysis showed that transgenic plants were more resistant to Fusarium and Pythium infections as compared with the control plants. Due to the high antimicrobial activity of the recombinant peptides against plant pathogens and novelty of recombinant peptides, this report shows the feasibility of this approach to generate disease resistance transgenic plants.

DOI: 10.3389/fpls.2020.01236
PubMed: 32903611
PubMed Central: PMC7438598


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants.</title>
<author>
<name sortKey="Khademi, Mitra" sort="Khademi, Mitra" uniqKey="Khademi M" first="Mitra" last="Khademi">Mitra Khademi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Varasteh Shams, Marzieh" sort="Varasteh Shams, Marzieh" uniqKey="Varasteh Shams M" first="Marzieh" last="Varasteh-Shams">Marzieh Varasteh-Shams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nazarian Firouzabadi, Farhad" sort="Nazarian Firouzabadi, Farhad" uniqKey="Nazarian Firouzabadi F" first="Farhad" last="Nazarian-Firouzabadi">Farhad Nazarian-Firouzabadi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ismaili, Ahmad" sort="Ismaili, Ahmad" uniqKey="Ismaili A" first="Ahmad" last="Ismaili">Ahmad Ismaili</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32903611</idno>
<idno type="pmid">32903611</idno>
<idno type="doi">10.3389/fpls.2020.01236</idno>
<idno type="pmc">PMC7438598</idno>
<idno type="wicri:Area/Main/Corpus">000113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000113</idno>
<idno type="wicri:Area/Main/Curation">000113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000113</idno>
<idno type="wicri:Area/Main/Exploration">000113</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants.</title>
<author>
<name sortKey="Khademi, Mitra" sort="Khademi, Mitra" uniqKey="Khademi M" first="Mitra" last="Khademi">Mitra Khademi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Varasteh Shams, Marzieh" sort="Varasteh Shams, Marzieh" uniqKey="Varasteh Shams M" first="Marzieh" last="Varasteh-Shams">Marzieh Varasteh-Shams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nazarian Firouzabadi, Farhad" sort="Nazarian Firouzabadi, Farhad" uniqKey="Nazarian Firouzabadi F" first="Farhad" last="Nazarian-Firouzabadi">Farhad Nazarian-Firouzabadi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ismaili, Ahmad" sort="Ismaili, Ahmad" uniqKey="Ismaili A" first="Ahmad" last="Ismaili">Ahmad Ismaili</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</nlm:affiliation>
<country xml:lang="fr">Iran</country>
<wicri:regionArea>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad</wicri:regionArea>
<wicri:noRegion>Khorramabad</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Antimicrobial peptides have been long known to confer resistance to plant pathogens. In this study, new recombinant peptides constructed from a dermaseptin B1 (DrsB1) peptide fused to a chitin-binding domain (CBD) from Avr4 protein, were used for
<i>Agrobacterium tumefaciens</i>
-mediated transformation of tobacco plants. Polymerase chain reaction (PCR), semi-quantitative RT-PCR, and western blotting analysis demonstrated the incorporation and expression of transgenes in tobacco genome and transgenic plants, respectively.
<i>In vitro</i>
experiments with recombinant peptides extracted from transgenic plants demonstrated a significant (P<0.01) inhibitory effect on the growth and development of plant pathogens. The DrsB1-CBD recombinant peptide had the highest antifungal activity against fungal pathogens. The expression of the recombinant peptides greatly protected transgenic plants from
<i>Alternaria alternata, Alternaria solani, Fusarium oxysporum</i>
, and
<i>Fusarium solani</i>
fungi, in comparison to
<i>Pythium</i>
sp. and
<i>Pythium aphanidermatum</i>
. Expression of new recombinant peptides resulted in a delay in the colonization of fungi and appearance of fungal disease symptoms from 6 days to more than 7 weeks. Scanning electron microscopy images revealed that the structure of the fungal mycelia appeared segmented, cling together, and crushed following the antimicrobial activity of the recombinant peptides. Greenhouse bioassay analysis showed that transgenic plants were more resistant to
<i>Fusarium</i>
and
<i>Pythium</i>
infections as compared with the control plants. Due to the high antimicrobial activity of the recombinant peptides against plant pathogens and novelty of recombinant peptides, this report shows the feasibility of this approach to generate disease resistance transgenic plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32903611</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1236</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.01236</ELocationID>
<Abstract>
<AbstractText>Antimicrobial peptides have been long known to confer resistance to plant pathogens. In this study, new recombinant peptides constructed from a dermaseptin B1 (DrsB1) peptide fused to a chitin-binding domain (CBD) from Avr4 protein, were used for
<i>Agrobacterium tumefaciens</i>
-mediated transformation of tobacco plants. Polymerase chain reaction (PCR), semi-quantitative RT-PCR, and western blotting analysis demonstrated the incorporation and expression of transgenes in tobacco genome and transgenic plants, respectively.
<i>In vitro</i>
experiments with recombinant peptides extracted from transgenic plants demonstrated a significant (P<0.01) inhibitory effect on the growth and development of plant pathogens. The DrsB1-CBD recombinant peptide had the highest antifungal activity against fungal pathogens. The expression of the recombinant peptides greatly protected transgenic plants from
<i>Alternaria alternata, Alternaria solani, Fusarium oxysporum</i>
, and
<i>Fusarium solani</i>
fungi, in comparison to
<i>Pythium</i>
sp. and
<i>Pythium aphanidermatum</i>
. Expression of new recombinant peptides resulted in a delay in the colonization of fungi and appearance of fungal disease symptoms from 6 days to more than 7 weeks. Scanning electron microscopy images revealed that the structure of the fungal mycelia appeared segmented, cling together, and crushed following the antimicrobial activity of the recombinant peptides. Greenhouse bioassay analysis showed that transgenic plants were more resistant to
<i>Fusarium</i>
and
<i>Pythium</i>
infections as compared with the control plants. Due to the high antimicrobial activity of the recombinant peptides against plant pathogens and novelty of recombinant peptides, this report shows the feasibility of this approach to generate disease resistance transgenic plants.</AbstractText>
<CopyrightInformation>Copyright © 2020 Khademi, Varasteh-Shams, Nazarian-Firouzabadi and Ismaili.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Khademi</LastName>
<ForeName>Mitra</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Varasteh-Shams</LastName>
<ForeName>Marzieh</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nazarian-Firouzabadi</LastName>
<ForeName>Farhad</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ismaili</LastName>
<ForeName>Ahmad</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">antifungal</Keyword>
<Keyword MajorTopicYN="N">chitin-binding domain</Keyword>
<Keyword MajorTopicYN="N">effector protein</Keyword>
<Keyword MajorTopicYN="N">expression</Keyword>
<Keyword MajorTopicYN="N">genetic engineering</Keyword>
<Keyword MajorTopicYN="N">transgenic plant</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>17</Hour>
<Minute>56</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32903611</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.01236</ArticleId>
<ArticleId IdType="pmc">PMC7438598</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):592-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29266555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2018 Sep;8(9):391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30175028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1420-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Sep 13;33(36):10951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8086412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2008 Jul;5(7):1225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18649311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol J. 2017 Feb;33(1):95-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28167893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 15;543(7645):328-336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28300100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Feb;223(3):392-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16240149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2019 Jul;100(4-5):481-494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31073810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2011 Feb;95(2):178-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30743411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011 May 23;11:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21605457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Aug;111(4):711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15947906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jun;73(12):3833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 16;269(50):31635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7989335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1685-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1994 Feb;13(5):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2019 Apr;61(4):253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30747381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 16;279(16):16786-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14769793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2012 Jan 20;157(2):334-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22115953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jan 21;269(3):1934-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2402-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 23;8(12):e85515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24376887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 May;87(5):494-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2006 Dec;50(2):147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2001 May;Chapter 2:Unit2.3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18265183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2012 Mar;237(3):312-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22378824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:273-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Biol. 2014 May 28;7(4):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25320647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2002;66(4):236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12491537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2015 Nov 1;33(6 Pt 2):1005-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25784148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2002 May;66(5):970-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12092848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2007 Oct;16(5):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17160452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Sep;28(9):996-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25915453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2012 Mar;39(2):146-155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32480769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2019 Nov;8(11):e837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30912302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 May;72(5):3302-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2002 Sep;58(9):944-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12233186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Apr;13(4):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10755307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1092-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22267486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2008 Aug;48(4):293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18720488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2016 Dec 27;6:194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28083516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Sep;103(1):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8208848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2003 Mar;55(1):27-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 20;329(5994):953-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2017 Mar;96(3):254-260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27872334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Nov;5(6):720-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Aug;1788(8):1537-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18929530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Feb;76(3):769-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:373-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27491435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:83-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078878</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Iran</li>
</country>
</list>
<tree>
<country name="Iran">
<noRegion>
<name sortKey="Khademi, Mitra" sort="Khademi, Mitra" uniqKey="Khademi M" first="Mitra" last="Khademi">Mitra Khademi</name>
</noRegion>
<name sortKey="Ismaili, Ahmad" sort="Ismaili, Ahmad" uniqKey="Ismaili A" first="Ahmad" last="Ismaili">Ahmad Ismaili</name>
<name sortKey="Nazarian Firouzabadi, Farhad" sort="Nazarian Firouzabadi, Farhad" uniqKey="Nazarian Firouzabadi F" first="Farhad" last="Nazarian-Firouzabadi">Farhad Nazarian-Firouzabadi</name>
<name sortKey="Varasteh Shams, Marzieh" sort="Varasteh Shams, Marzieh" uniqKey="Varasteh Shams M" first="Marzieh" last="Varasteh-Shams">Marzieh Varasteh-Shams</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32903611
   |texte=   New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32903611" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020